
Quantum Complexity Theory Sevag Gharibian
Summer 2019, University of Paderborn

Lecture 9: Boson sampling

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t
agree with experiment, it’s wrong.”
— Richard P. Feynmann

Contents

1 Of hedgehogs and photons 2

2 Connection to the matrix permanent 5

3 Boson Sampling 6
3.1 The exact case . 6
3.2 The approximate case . 7

3.2.1 Proof of Theorem 4 . 9

Introduction. We began in Lecture 1 by stating that the field of quantum computation is at a critical
crossroads, with one of the following statements being necessarily false: The Extended Church-Turing Thesis
is true, integer factorization does not have a polynomial time classical algorithm, or large-scale universal
quantum computers can be built. Since this crossroads arose due to the discovery of Shor’s quantum
polynomial-time factoring algorithm, a natural goal is to try and show the Extended Church-Turing Thesis
is false by running Shor’s algorithm on a “large enough” quantum computer.

Unfortunately, there are caveats to this. First, even if Shor’s algorithm could be implemented experi-
mentally, this does not rule out the second statement — that perhaps there is an efficient classical algorithm
for factoring. More worrisome is the fact that we are arguably not close to a functioning universal quantum
computer capable of breaking today’s RSA keys. For example, to a theoretician, a quantum random walk
on the line is a rather basic construct; yet, implementing such a walk efficiently (i.e. resources scaling poly-
nomially with the length of the walk) in an actual photonic system is highly non-trivial, requiring ideas such
as time multiplexing.

Luckily, if our goal is to disprove the Extended Church-Turing Thesis, we do not necessarily need a
universal quantum computer. Rather, a sufficiently restricted quantum model may still be able to solve
“hard” problems, and yet be implementable on a large scale via near-term “noisy intermediate scale quan-
tum devices” (NISQ). This quest for an experimental demonstration of quantum computational speedup has
fallen under the moniker of “quantum supremacy”, with multiple candidate approaches to date: The Instan-
taneous Quantum Polynomial-Time (IQP) model, random circuit sampling, and the deterministic quantum
computation with one quantum bit (DQC1) model. Here, however, we shall focus on a framework which
has elicited a particularly beautiful collaboration between the computer science and physics communities:
Boson sampling.

Organization. We begin in Section 1 with an introduction to non-interacting bosonic systems. Section 2
describes the connection between such systems and computation of the matrix permanent. Using this
background, Section 3 defines the Boson Sampling problem. Finally, Sections 3.1 and 3.2 discuss intractability
of exact and approximate Boson Sampling for classical computers.

1

1 Of hedgehogs and photons

The basic premise of Boson sampling is to use non-interacting Bosonic systems to implement a computa-
tional task which is “easy” quantumly, yet provably “hard” classically. For our purposes, “bosons” will be
“photons”, and to begin with, we will equate “photons” with “hedgehogs”.

The hedgehog model of computing. Suppose we have n identical hedgehogs, and m ≥ n burrows
(numbered 1 to m). The hedgehog model is as follows:

1. Before nightfall, the first n burrows contain precisely 1 hedgehog each1.

2. During the night, each hedgehog can move from its current burrow to any other. Some rules for this:

• Parties are allowed, i.e. a burrow can host multiple hedgehogs.

• No hedgehogs are created or destroyed in this process, i.e. we have conservation of hedgehogs.

3. When the night ends, we measure: How many hedgehogs are in each burrow?

To formalize this model, we can work in the hedgehog number basis, which is different from the usual standard
basis for qubit systems. Namely, to specify the positions of all n hedgehogs, we use basis state

|S〉 = |s1s2 · · · sm〉

where si ∈ {0, . . . , n} denotes the number of hedgehogs in burrow i. The si are called “occupation numbers”,
and this basis the “occupation number basis”.

Exercise. Why are we only concerned with the number of hedgehogs per burrow? (Hint: Which keyword
used above essentially says this is the only defining characteristic of the hedgehogs?)

The set of all such valid basis states is denoted

Φm,n :=

{
(s1, . . . , sm) | si ∈ {0, . . . , n} and

m∑
i=1

si = n

}
. (1)

Exercise. Why is the summation condition required in the definition of Φm,n?

Of course, we’re not just dealing with any old hedgehogs, but quantum hedgehogs; thus, we allow superpo-
sitions over hedgehog states:

|ψ〉 =
∑

S∈Φm,n

αS |S〉,

where as usual
∑
S |αS |

2
= 1. A crucial point to note here is that unlike with m qubit systems, the vector

space we are working in is not a tensor product of m systems of dimension n; we revisit this shortly.

From hedgehogs to photons. To move from the world of hedgehogs to photons, we make two simple
substitutions: Replace the word “hedgehog” with “photon”, and “burrow” with “mode” (for this lecture, a
“mode” can be thought of as a spatial mode, meaning a “location” of a photon). We can now rephrase our
discussion above formally in the setting of photons:

1. At the start of the experiment, our apparatus has n photons in the first n modes, and the remaining
m− n modes are empty, i.e. our start state is

|1n〉 := |1n0m−n〉 ∈ Φm,n.
1Most hedgehog species are nocturnal. They are also very cute.

2

Figure 1: As this is the closest we will get to experiment in this course, it is worth seeing an actual piece
of hardware: Depicted above is a beamsplitter designed to reflect 80% of incoming light, and transmit the
remaining 20%. Intuitively, a beamsplitter implements a Hadamard gate. (Source: https://commons.

wikimedia.org/wiki/File:Flat_metal-coated_beamsplitter.png.)

2. Formalizing the set of allowed operations (i.e. how the hedgehogs choose to switch burrows) is trickier,
as we are working in a Hilbert space without a tensor product structure (in contrast to qubit systems).
To see the full picture takes two steps: (1) We first look at the “idealized” case in which we have 1
photon and m modes; this will be analogous to modeling an m-dimensional qudit. The unitaries U in
this case will hence be m ×m. (2) We then show how to map any m ×m unitary U up to the full
space Φm,n spans, which requires an understanding of how U acts on multi -photon configurations.

Single photon configurations. Denote the subset of single photon configurations as Φm,1 =: {|i〉} ⊂
Φm,n, i.e. |i〉 has si = 1 for some i ∈ [m] and si = 0 otherwise. Restricted to this space, one can
think of the entire system as a single m-dimensional qudit, with the ith “standard basis state” given
by |i〉 = |0i−110m−i〉 (i.e. imagine encoding the basis states in unary, not binary). The set of allowed
operations on this space, as expected, is the set of all m×m unitary matrices U .

What makes optical setups appealing is that any such U can be written U = UT · · ·U1 for T ∈ O(m2),
where each Uk is an m ×m unitary or optical element falling into one of two classes: Phase shifters
and beam splitters. These optical elements are relatively easy to implement in a lab; see Figure 1.
Restricted to the single photon basis Φm,1, each Uk acts non-trivially only on some pair of modes i
and j, i.e. on unary basis states |i〉 and |j〉, and hence can be represented as a 2× 2 unitary

Uk =

(
a b
c d

)
,

where the rows are labelled by |i〉 and |j〉, respectively. On Φm,1, Uk acts as expected:

|i〉 7→ a|i〉+ c|j〉, |j〉 7→ b|i〉+ d|j〉, |k〉 7→ |k〉 for any k 6= i, j. (2)

Exercise. Consider the Pauli X12 gate applied to modes 1 and 2. Then, the 2 × 2 optical element
has matrix representation (restricted to Span(|1〉, |2〉))

X12 =

(
0 1
1 0

)
.

What is X12|1〉, X12|2〉, and X12|k〉 for k > 2?

Exercise. Write down the full 3 × 3 matrix representation for X12 with respect to the Φm,1 basis
when m = 3.

3

https://commons.wikimedia.org/wiki/File:Flat_metal-coated_beamsplitter.png
https://commons.wikimedia.org/wiki/File:Flat_metal-coated_beamsplitter.png

Restricted to this Φm,1 basis, phase shifters and beamsplitters have intuitively simple representations
(for θ ∈ R): (

1 0
0 eiθ

)
and

(
cos θ − sin θ
sin θ cos θ

)
.

Thus, phase shifters are essentially phase gates, and beamsplitters are analogous to Hadamard gates.

Exercise. How does a phase shifter applied to modes i and j act on basis states |i〉, |j〉 ∈ Φm,1? How
about a beam splitter?

Multi-photon configurations. Focusing on single-photon configurations gave an intuitive sense of what
phase shifters and beamsplitters do, but in reality our full system of n photons in m modes is not
m-dimensional, but M = |Φm,n|-dimensional.

Exercise. Show that M =
(
m+n−1

n

)
.

Given any m×m unitary U (which recall can be implemented with phase shifters and beamsplitters),
we hence need a way of mapping U to the larger M -dimensional space to understand its action on all
basis states in Φm,n, as opposed to just Φm,1. (In other words, how does Uk act on modes which contain
multiple photons, such as |20〉?) This mapping ϕ : U(Cm) 7→ U(CM) turns out to be a homomorphism,
meaning for us that it obeys ϕ(U) = ϕ(UT) · · ·ϕ(U1). Thus, it suffices understand its action on the
2× 2 optical elements Uk, which is:

〈st|ϕ(Uk)|uv〉 = 0 if s+ t 6= u+ v (3)

〈st|ϕ(Uk)|uv〉 =

√
u!v!

s!t!

∑
p+q=u
p≤s
q≤t

(
s

p

)(
t

q

)
apbs−pcqdt−q if s+ t = u+ v. (4)

Exercise. Why is Equation (3) equal to 0? (Hint: Which property of the hedgehogs must we
preserve?)

Exercise. Setting a = d = 0 and b = c = 1, confirm that Equations (3) and (4) correctly recover the
action of Pauli X when restricted to Φm,1.

Exercise. How does a phase shifter act on basis state |20〉 ∈ Φ2,2?

Exercise. What is the overlap onto |11〉 ∈ Φ2,2 if we start with |20〉 ∈ Φ2,0 and apply Uk = X? How
about the overlap onto |02〉? What does this suggest intuitively about how X acts on multiple photons?

Putting it all together. In sum, given any desired m ×m unitary U (including ones which will later
encode hard problems), in an optical setup one can implement U by a sequence of O(m2) phase
shifters and beamsplitters, and the effective action of this U on the larger M -dimensional Hilbert
space is prescribed by ϕ(U) = ϕ(UT) · · ·ϕ(U1).

3. At the end of the experiment, we measure with respect to basis Φm,n to see which modes the photons
are in. Let DU denote the distribution obtained, assuming the experiment implemented m×m unitary
U . Then, the probability of observing configuration S is

Pr[S ∈ Φm,n] = |〈S|ϕ(U)|1n〉|2 .

4

2 Connection to the matrix permanent

To now connect our optics setup to hard computational problems, we return to our hedgehog model of com-
puting, and study a related thought experiment. In this experiment, we have n indistinguishable hedgehogs
and n burrows. The rules are as follows:

1. Before nightfall, burrow i ∈ [n] contains precisely one hedgehog, the hedgehog labelled i.

2. During the night, hedgehog i moves to burrow j with probability aij .

3. When the night ends, we ask: What is the probability that each burrow contains precisely one hedge-
hog?

Let us derive a formula for this probability, for which we simply have to count all configurations the hedgehogs
could end up in. For starters, observe that the probability that the ith hedgehog remains in the ith burrow
is just a11 · · · ann.

Exercise. What is the probability that for all i, hedgehog i moves to burrow (i mod n) + 1?

Exercise. Show that the probability that each burrow contains precisely one hedgehog is

∑
σ∈Sn

n∏
i=1

ai,σ(i) =: Per(A), (5)

where Sn is the set of permutations acting on n elements, and A is the n× n matrix with entries aij .

Brief aside on the permanent. The quantity in Equation (5) is the permanent of matrix A, and has
seen considerable attention for at least two centuries now (being mentioned in the 1812 memoirs of Binet
and Cauchy). It looks remarkably like a related quantity — the determinant of A, whose formula is identical
except each term in the sum is multiplied by the sign of the permutation σ. Yet, these two apples most
certainly did not fall from the same tree — while the determinant is efficiently computable, the permanent is
#P-hard to compute exactly, even if A consists only of entries from {0, 1}. The best known general algorithm
for Per(A) is Ryser’s algorithm, which requires Θ(n2n) arithmetic operations. We do catch a break when
A has only non-negative entries: In this case, there is a fully polynomial-time randomized approximation
scheme (FPRAS) for approximating Per(A), i.e. for any inverse polynomial error ε, there is a polynomial-
time randomized algorithm outputting Per(A) up to relative error (1± ε). While this setting does apply to
our hedgehog model above, it will crucially not apply for the type of matrices which arise through boson
sampling.

Connection to optics. Recall that in our optics setup, any m×m unitary U can be performed (restricted
to the single photon space) via a sequence of phaseshifters and beamsplitters. The key point is that if we
run our optics experiment starting in configuration |T 〉 ∈ Φm,n and apply U , then one can show that the
probability of observing end configuration |S〉 ∈ Φm,n is given by

|〈S|ϕ(U)|T 〉|2 =
|Per(UST)|2

s1! · · · sm!t1! · · · tm!
, (6)

for |S〉 = |s1 · · · sm〉, |T 〉 = |t1 · · · tm〉, and UST defined via the following two-step process (this is necessary
because we must account for the action of U on multi-photon configurations via ϕ):

1. Map U to UT by listing ti copies of column i of U .

2. Map UT to UST by listing si copies of row i of UT .

5

This process is best demonstrated with an example, for which we set m = 3, n = 2, S = |200〉 and T = |110〉:

U =

 0 1 0
1 0 0
0 0 −1

 UT =

 0 1
1 0
0 0

 UST =

(
0 1
0 1

)
.

Exercise. Show that UST is an n× n matrix, for n the number of photons.

Exercise. Show that if |T 〉 = |1n0m−n〉, then UT is U restricted to its first n columns.

Exercise. Show that if |S〉 = |T 〉 = |1n0m−n〉, then UST is the upper left n× n principal submatrix of U ,
i.e. the submatrix obtained by keeping the first n columns and rows of U .

In sum, if one could write down output probabilities of our photonic experiment, then one could compute
permanents of matrices UST . In particular, as the last exercise above suggests, when |S〉 = |T 〉 = |1n0m−n〉,
this boils down to the permanent of whichever n × n matrix A we are able to embed in the top-left block
of U . Of course, there are some important questions to be answered: Which types of matrices can we
embed into unitaries in such a fashion? How do we convert the ability to sample to the ability to estimate
output probabilities? Can an experimental quantum optics device, which will inherently be subject to noise
and imperfection, itself perform such estimation? These questions, along with the connection between the
permanent and photonics setups, are the starting point of boson sampling.

3 Boson Sampling

We are now in position to semi-formally define the task of Boson Sampling.

Definition 1 (Boson Sampling).

• Input: An m×m unitary matrix U .

• Output: Define distribution DU as follows. Starting in configuration |1n〉 ∈ Φm,n, we imagine running
the optics setup outlined in Section 1 with unitary U . For any configuration S ∈ Φm,n, the probability
of observing output configuration S is

PrDU
[S] =

|Per(US,1n)|2

s1! · · · sm!
.

The output of Boson Sampling is to sample configurations according to DU .

Two remarks are in order: First, unlike all other computational problems we have seen in this course, Boson
Sampling is not a decision or promise problem; rather, it is a sampling problem (i.e. the output is not a
single bit, but a random sample over strings). Second, the “semi-formal” aspect of the definition above is
that we have not specified the precision to which the sampling must be done (i.e. are we required to sample
from DU exactly? Approximately? Within what type of error?). These distinctions are crucial, and are
discussed in the next two sections.

3.1 The exact case

The strongest variant of Boson Sampling would be to require the sampling to be perfect — i.e. one outputs
samples from Φm,n exactly according to DU . This is not experimentally realistic, as any physical setup is
subject to noise. Nevertheless, in this case one can rigorously show the following result.

6

Theorem 2 (Exact classical Boson Sampling). Suppose there is a classical algorithm A which, given any
m ×m unitary U , solves the Boson Sampling problem exactly. We make no assumptions about A (e.g. it
could be a P, BPP, or PH machine). Without loss of generality, we may view A as a deterministic machine
which is fed a uniformly random string of bits r. By assumption, the sample produced by A(U, r) is distributed
exactly according to DU . Then,

P#P ⊆ BPPNPA

.

Deer in the headlights: Interpreting Theorem 2 . Theorem 2 is a bit stunning at first sight, so let us
carefully unpack it.

• What it does say is that if A is a BPP machine (or even a PH machine!), then

P#P ⊆ BPPNPBPP

⊆ PH,

which would collapse PH. Thus, it is highly unlikely that exact Boson Sampling is efficiently simulatable
classically.

• What it does not say is anything about whether a quantum computer can perform exact Boson Sam-
pling. And therein lies the magic of the theorem — Theorem 2 does not prove that exact Boson
Sampling is #P-hard. Rather, it shows that if there is an efficient classical algorithm for Boson
Sampling, then PH collapses.

Exercise. Why would it be presumably “bad” if Theorem 2 actually showed Boson Sampling is #P-
hard? (Hint: What would this say about the ability of quantum computers to solve Boson Sampling?)

The way Theorem 2 accomplishes this feat is by exploiting the fact that the randomness r in any
classical machine A can be “extracted” from it. In other words, a classical algorithm A is without loss
of generality deterministic, up to an input string of uniformly random bits r.

Exercise. Why is it not clear how to similarly “extract the randomness” out of a quantum compu-
tation?

• While theoretically interesting, Theorem 2 unfortunately does not suffice to rule out the Extended
Church Turing thesis, as even an optical setup realistically cannot perform exact Boson Sampling due
to experimental noise. Thus, we must consider approximate Boson Sampling.

3.2 The approximate case

While things work out neatly in the exact case, the approximate case (which is the relevant one) is much
messier; in particular, we do not have a rigorous statement along the lines of Theorem 2. Rather, there is a
two-step agenda in place, the second part of which currently relies on (arguably reasonable) conjectures:

1. What is currently proven: If one can classically simulate “approximate” Boson Sampling, then one
could compute the permanent “approximately” and “on average” (i.e. for “most inputs”).

2. What relies on conjecture: Computing the permanent “approximately” and “on average” is #P-
hard.

Taken together, this agenda would yield that efficient classical simulation (i.e. in BPP) of “reasonable”
Boson Sampling setups (i.e. allowing reasonable error, and taking into account “average-case” inputs as op-
posed to extremal worst-case inputs2) is likely impossible. Again, the agenda does not imply that simulating

2This distinction is crucial. A classic example is the canonical NP-complete problem 3-SAT; while intractable in the worst
case, many (if not most) instances of 3-SAT can be solved efficiently in practice using heuristics.

7

Boson Sampling approximately and on average is #P-hard, but rather that any classical algorithm for such a
simulation can be bootstrapped to solve #P-hard problems. Finally, let us stress that it is not clear whether
even a quantum computer can solve approximate Boson Sampling on average — the biggest challenge is
arguably the requirement for single photon sources (i.e. to prepare the initial state |1n〉). Addressing this
question is not the purpose of today’s lecture.

Formalizing the agenda. In the remainder of this lecture, we shall sketch how Step 1 of the agenda
above is formalized and shown. The computational problem capturing approximate permanent computation
on average is the following.

Definition 3 (Gaussian Permanent Estimation (GPE)).

• Input: (1) A random matrix X ∈ L(Cn), each entry of which is distributed independently according
to the standard Gaussian distribution N (0, 1). (2) Precision parameter ε > 0, specified in unary. (3)
Success probability parameter δ > 0, specified in unary.

• Output: With probability at least 1− δ (with respect to the randomness in choosing X), output a value
z ∈ R satisfying

|Per(X)|2 − εn! ≤ z ≤ |Per(X)|2 + εn!.

Exercise. Which parameter above captures the notion of solving for the permanent “approximately”?
Which parameter captures “on average”?

The main theorem of this lecture is the following, which states that if efficient classical simulation of
approximate Boson Sampling on average is possible, then GPE is in PH.

Theorem 4 (Main Theorem). Let DU be the Boson Sampling distribution from Definition 1 for m×m input
unitary U . Suppose there exists a classical algorithm A which, given precision parameter ε > 0 in unary,
outputs a sample from distribution D′U such that |DU −D′U | ≤ ε in time polynomial in m and 1/ε. Then,

GPE ∈ BPPNPA

.

For clarity, |DU −D′U | denotes the total variation distance between distributions DU and D′U .

Let us also formalize what we mean by a “classical algorithm A” in Theorem 4 above. Roughly, we shall
think of A as an approximate Boson Sampling oracle, i.e. we will not care about its internal workings (other
than it being deterministic), but just its input/output behavior.

Definition 5 (Approximate Boson Sampling oracle). A deterministic algorithm A, to be treated as an oracle,
which takes in as input:

• an m×m unitary matrix U ,

• a precision parameter ε > 0 encoded in unary,

• and “random” string r ∈ {0, 1}poly(n)
.

Let DA(U, ε) denote, for any fixed U and ε, the distribution over outputs of A when r is uniformly random.
Then, A outputs samples from Φm,n distributed according to distribution DA(U, ε) such that, for all U, ε,

|DA(U, ε)−DU | ≤ ε.

8

3.2.1 Proof of Theorem 4

We are now ready to move to the final stage of this lecture; giving a proof sketch of Theorem 4. Again,
let us stress that this theorem only says that classical simulation of approximate Boson Sampling solves a
problem related to computation of the permanent, GPE. It does not tell us whether GPE is hard to begin
with (this would be the job of Step 2 of the agenda of Section 3.2, which currently relies on conjectures),
nor does it say anything about whether quantum computers can simulate approximate Boson Sampling.

Proof sketch of Theorem 4. Let X, ε, δ be inputs to GPE, where recall X is n × n. We wish to bootstrap
a (classical) approximate Boson Sampling oracle A to approximate |Per(X)|2 within additive error ±εn!,

with success probability at least 1 − δ over the random choice of X, in class FBPPNPA

. (To be technically
correct, we use the base class FBPP here in place of BPP; the former is the function analogue of BPP which
is allowed to output strings longer than length 1.) For this, we will need two technical ingredients:

1. The Hiding Lemma.

2. Stockmeyer’s approximate counting algorithm.

We will introduce these when the time comes; for now, let us begin with the “naive” approach for solving
GPE using A.

The “naive” approach. As suggested at the end of Section 2, we will attempt to embed n×n matrix X in
the top left corner of an m×m unitary U , so that simulating Boson Sampling on U will output configuration
|1n〉 ∈ Φm,n with probability precisely |Per(X)|2. This gives us the ability to sample according to |Per(X)|2 —

to then convert this into the ability to estimate the scalar |Per(X)|2 itself, we apply Stockmeyer’s algorithm.

Exercise. Given the ability to run an experiment which accepts with probability 0 < p < 1, what is the
naive way to estimate the scalar p? Why does this approach not necessarily work to estimate |Per(X)|2
above (i.e. why do we seem to need Stockmeyer’s algorithm)?

To begin, recall that X is n× n. Let our Boson Sampling setup have n photons and m� n modes (e.g.
m = O(1

δn
5 log2 n

δ) suffices). By rescaling our input as X ′ := X/
√
m, our task is to estimate

|Per(X ′)|2 =
1

mn
|Per(X)|2

within additive error εn!/mn. We proceed as follows:

1. Embed X ′ as the top-left n× n principal submatrix of a unitary U (we ignore how this is done for the
moment).

2. Run the Boson Sampling oracle A with input (U, ε, r) for uniformly random r and inverse polynomial
ε. This allows us to sample from distribution D′U such that |DU −D′U | ≤ ε. Now, if it were true that
DU = D′U , then we would be in luck, since the probability of observing precisely one photon in each
of the first n modes is

PrDU
[1n] =

|Per(U1n,1n)|2

(1!)n(0!)m−n
= |Per(X ′)|2 .

Given the ability to sample outcome 1n with probability |Per(X ′)|2, we can now convert this to the

ability to approximate the scalar |Per(X ′)|2 itself via the following theorem.

Theorem 6 (Stockmeyer’s approximate counting). Given Boolean function f : {0, 1}n 7→ {0, 1}, let p
be the probability that a uniformly random input x causes f to accept, i.e.

p = Prx∈{0,1}n [f(x) = 1] =
1

2n

∑
x∈{0,1}n

f(x).

For any error tolerance g ≥ 1 + 1
poly(n) , p can be estimated within multiplicative error g in FBPPNPf

.

9

Exercise. In an earlier exercise, we said the naive approach for exploiting the ability to run an
experiment which accepts with probability 0 < p < 1 into an estimation of p itself did not work. Why
does Stockmeyer’s algorithm get around this problem? (Hint: Does Stockmeyer’s algorithm restrict p
in any essential way?)

Reflection. It is now clear why Theorem 6 works only for classical algorithms; namely, any classical
oracle implementation is just a Turing machine encoding a Boolean function f : {0, 1}n 7→ {0, 1} (up to
additional inputs to the machine, such as the random string r). This allows us to apply Stockmeyer’s
algorithm to count the number of satisfying assignments to f , and hence to estimate p. If A were
instead to be quantum, an analogous statement is not known3.

The problem with the naive approach. In our discussion of Stockmeyer’s algorithm above, we assumed
the Boson Sampling oracle is perfect, i.e. DU = D′U . However, recall that in our setup, A only satisfies
|DU −D′U | ≤ ε. So we must ask: How badly does this error affect our desired sampling outcome, S = 1n?
Intuitively, since ε ∈ O(1/poly(n)), and since there are exponentially many (i.e.

(
m
n

)
for m � n) possible

experimental outcomes or configurations in Φm,n, the expected error per configuration is exponentially small
in n. However, we are not interested in most configurations — we are only interested in the output configu-
ration S = 1n. And it is entirely possible, since we make no assumptions about A, that all of the ε sampling
error A makes is concentrated on this one outcome 1n we care about (i.e. all other outcomes S′ 6= 1n ∈ Φm,n
are sampled perfectly by A). This is a huge problem — PrDU

[1n] could be exponentially small in n, whereas
ε is as large as inverse polynomial in n, potentially wiping out our estimate of the former.

The final ingredient: The Hiding Lemma. To resolve this problem, let us revisit why the sampling
outcome S = 1n encoded the permanent of X ′ in the first place.

Exercise. Argue that S = 1n encodes |PerX ′|2 only because we embedded X into the top-left n × n
principal submatrix of unitary U . In other words, suppose we instead embed X (e.g.) into rows 2 to n+ 1

and columns 1 to n of U — which output configuration S ∈ Φm,n would now encode |PerX ′|2?

As the exercise above suggests, the output configuration S we care about depends entirely on where in
the matrix U we embed X ′. Thus, if oracle A makes a large error on output configuration 1n, no problem
— we simply encode X ′ elsewhere in U . Of course, a priori we have no idea on which configurations A
makes an error. So the obvious thing to do is to embed X ′ in a random n × n submatrix of U . How to
implement this, however, is not obvious — in particular, we need to do the embedding cleverly so that U
looks completely random to A (i.e. A should have no way of distinguishing where in U the submatrix X ′

was hidden). By doing so, we may argue that even if A acts adversarially, it cannot corrupt the particular
output configuration we care about with non-negligible probability. Thus, the error incurred by A can be
neglected with high probability, and we can then apply the “naive” approach using Stockmeyer’s algorithm
above.

This “hiding/embedding” trick is accomplished by the Hiding Lemma.

Lemma 7 (Hiding Lemma). Fix n, δ > 0, and m � n (e.g. m ∈ Θ(1
δn

5 log2 n
δ) suffices). There exists a

BPPNP algorithm B which, given an n × n matrix X with entries independently and identically distributed
as N (0, 1), behaves as follows: B succeeds with probability 1 − O(δ) over the choice of X, and conditioned
on succeeding, outputs a random m × m unitary U according to a distribution DX , such that both of the
following hold:

1. Assuming B succeeds with non-zero probability on X, we have that X ′ = X/
√
m occurs as a uniformly

random n× n submatrix of U .

3Intuitively, the problem quantumly is that “computational paths” can destructively interfere and cancel out, so that the
acceptance probability p of a quantum circuit is no longer the sum of a set of non-negative numbers, but the sum of both
positive and negative numbers.

10

2. The matrix U looks “uniformly random”. (Formally, the distribution over m ×m matrices produced
by first drawing X, and then conditioning on B succeeding on input X, is precisely the Haar measure
over m×m unitaries.)

In words, the Hiding Lemma does exactly what we need — property (1) states that the matrix for which
we wish to compute the permanent, X ′, is embedded in a random location of unitary U . If we could assume
the approximate Boson Sampling oracle A is “honest”, this alone might suffice. However, since we cannot
assume anything about A, we have our failsafe — property (2) says that not only is X ′ randomly embedded
into U , but that there is information theoretically no way to tell, given U alone, where X was hidden.
(Here we are implicitly using the fact that if two distributions, or more generally density operators, have
trace distance 0, then there is no possible measurement which distinguishes these operators with probability
better than random guessing.) Thus, it can be shown that the ε ∈ O(1/poly(n)) error incurred by our
approximate Boson sampling oracle is highly unlikely to affect the particular output configuration S ∈ Φm,n
which corresponds to where X ′ was hidden. Thus, we can apply Stockmeyer’s algorithm to the choice of S
output by the Hiding Lemma to estimate X ′, yielding the claim of Theorem 4.

We close by remarking that the proof of the Hiding Lemma is rather technical, and thus omitted for the
purposes of this lecture. However, it is not entirely surprising that random submatrices of Haar-random
unitaries look “Gaussian” — a standard approach for sampling Haar-random unitaries is roughly to begin
by picking all entries as i.i.d. Gaussian entries, and then adjusting all columns to be orthonormal via the
Gram-Schmidt procedure. Indeed, this is precisely one of the reasons that GPE is defined according to
Gaussian instances to begin with. (Of course, the proof of the Hiding Lemma remains non-trivial.)

11

	Of hedgehogs and photons
	Connection to the matrix permanent
	Boson Sampling
	The exact case
	The approximate case
	Proof of Theorem 4

